Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fatiguing contractions increase protein S-glutathionylation occupancy in mouse skeletal muscle.

Identifieur interne : 000265 ( Main/Exploration ); précédent : 000264; suivant : 000266

Fatiguing contractions increase protein S-glutathionylation occupancy in mouse skeletal muscle.

Auteurs : Philip A. Kramer [États-Unis] ; Jicheng Duan [États-Unis] ; Matthew J. Gaffrey [États-Unis] ; Anil K. Shukla [États-Unis] ; Lu Wang [États-Unis] ; Theo K. Bammler [États-Unis] ; Wei-Jun Qian [États-Unis] ; David J. Marcinek [États-Unis]

Source :

RBID : pubmed:29857311

Descripteurs français

English descriptors

Abstract

Protein S-glutathionylation is an important reversible post-translational modification implicated in redox signaling. Oxidative modifications to protein thiols can alter the activity of metabolic enzymes, transcription factors, kinases, phosphatases, and the function of contractile proteins. However, the extent to which muscle contraction induces oxidative modifications in redox sensitive thiols is not known. The purpose of this study was to determine the targets of S-glutathionylation redox signaling following fatiguing contractions. Anesthetized adult male CB6F1 (BALB/cBy × C57BL/6) mice were subjected to acute fatiguing contractions for 15 min using in vivo stimulations. The right (stimulated) and left (unstimulated) gastrocnemius muscleswere collected 60 min after the last stimulation and processed for redox proteomics assay of S-glutathionylation. Using selective reduction with a glutaredoxin enzyme cocktail and resin-assisted enrichment technique, we quantified the levels of site-specific protein S-glutathionylation at rest and following fatiguing contractions. Redox proteomics revealed over 2200 sites of S-glutathionylation modifications, of which 1290 were significantly increased after fatiguing contractions. Muscle contraction leads to the greatest increase in S-glutathionylation in the mitochondria (1.03%) and the smallest increase in the nucleus (0.47%). Regulatory cysteines were significantly S-glutathionylated on mitochondrial complex I and II, GAPDH, MDH1, ACO2, and mitochondrial complex V among others. Similarly, S-glutathionylation of RYR1, SERCA1, titin, and troponin I2 are known to regulate muscle contractility and were significantly S-glutathionylated after just 15 min of fatiguing contractions. The largest fold changes (> 1.6) in the S-glutathionylated proteome after fatigue occurred on signaling proteins such as 14-3-3 protein gamma and MAP2K4, as well as proteins like SERCA1, and NDUV2 of mitochondrial complex I, at previously unknown glutathionylation sites. These findings highlight the important role of redox control over muscle physiology, metabolism, and the exercise adaptive response. This study lays the groundwork for future investigation into the altered exercise adaptation associated with chronic conditions, such as sarcopenia.

DOI: 10.1016/j.redox.2018.05.011
PubMed: 29857311
PubMed Central: PMC6007084


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fatiguing contractions increase protein S-glutathionylation occupancy in mouse skeletal muscle.</title>
<author>
<name sortKey="Kramer, Philip A" sort="Kramer, Philip A" uniqKey="Kramer P" first="Philip A" last="Kramer">Philip A. Kramer</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Radiology, University of Washington, Seattle, WA 98105, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, University of Washington, Seattle, WA 98105</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Duan, Jicheng" sort="Duan, Jicheng" uniqKey="Duan J" first="Jicheng" last="Duan">Jicheng Duan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gaffrey, Matthew J" sort="Gaffrey, Matthew J" uniqKey="Gaffrey M" first="Matthew J" last="Gaffrey">Matthew J. Gaffrey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shukla, Anil K" sort="Shukla, Anil K" uniqKey="Shukla A" first="Anil K" last="Shukla">Anil K. Shukla</name>
<affiliation wicri:level="2">
<nlm:affiliation>Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Lu" sort="Wang, Lu" uniqKey="Wang L" first="Lu" last="Wang">Lu Wang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98105, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98105</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Bammler, Theo K" sort="Bammler, Theo K" uniqKey="Bammler T" first="Theo K" last="Bammler">Theo K. Bammler</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98105, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98105</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Qian, Wei Jun" sort="Qian, Wei Jun" uniqKey="Qian W" first="Wei-Jun" last="Qian">Wei-Jun Qian</name>
<affiliation wicri:level="2">
<nlm:affiliation>Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States. Electronic address: Weijun.qian@pnnl.gov.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Marcinek, David J" sort="Marcinek, David J" uniqKey="Marcinek D" first="David J" last="Marcinek">David J. Marcinek</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Radiology, University of Washington, Seattle, WA 98105, United States. Electronic address: dmarc@uw.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, University of Washington, Seattle, WA 98105</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29857311</idno>
<idno type="pmid">29857311</idno>
<idno type="doi">10.1016/j.redox.2018.05.011</idno>
<idno type="pmc">PMC6007084</idno>
<idno type="wicri:Area/Main/Corpus">000237</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000237</idno>
<idno type="wicri:Area/Main/Curation">000237</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000237</idno>
<idno type="wicri:Area/Main/Exploration">000237</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Fatiguing contractions increase protein S-glutathionylation occupancy in mouse skeletal muscle.</title>
<author>
<name sortKey="Kramer, Philip A" sort="Kramer, Philip A" uniqKey="Kramer P" first="Philip A" last="Kramer">Philip A. Kramer</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Radiology, University of Washington, Seattle, WA 98105, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, University of Washington, Seattle, WA 98105</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Duan, Jicheng" sort="Duan, Jicheng" uniqKey="Duan J" first="Jicheng" last="Duan">Jicheng Duan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gaffrey, Matthew J" sort="Gaffrey, Matthew J" uniqKey="Gaffrey M" first="Matthew J" last="Gaffrey">Matthew J. Gaffrey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shukla, Anil K" sort="Shukla, Anil K" uniqKey="Shukla A" first="Anil K" last="Shukla">Anil K. Shukla</name>
<affiliation wicri:level="2">
<nlm:affiliation>Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Lu" sort="Wang, Lu" uniqKey="Wang L" first="Lu" last="Wang">Lu Wang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98105, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98105</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Bammler, Theo K" sort="Bammler, Theo K" uniqKey="Bammler T" first="Theo K" last="Bammler">Theo K. Bammler</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98105, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98105</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Qian, Wei Jun" sort="Qian, Wei Jun" uniqKey="Qian W" first="Wei-Jun" last="Qian">Wei-Jun Qian</name>
<affiliation wicri:level="2">
<nlm:affiliation>Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States. Electronic address: Weijun.qian@pnnl.gov.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Marcinek, David J" sort="Marcinek, David J" uniqKey="Marcinek D" first="David J" last="Marcinek">David J. Marcinek</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Radiology, University of Washington, Seattle, WA 98105, United States. Electronic address: dmarc@uw.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, University of Washington, Seattle, WA 98105</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Redox biology</title>
<idno type="eISSN">2213-2317</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Electron Transport Complex I (genetics)</term>
<term>Electron Transport Complex I (metabolism)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glycosylation (MeSH)</term>
<term>Hydrogen Peroxide (chemistry)</term>
<term>Mice (MeSH)</term>
<term>Muscle Contraction (drug effects)</term>
<term>Muscle Contraction (genetics)</term>
<term>Muscle Fatigue (drug effects)</term>
<term>Muscle Fatigue (genetics)</term>
<term>Muscle, Skeletal (drug effects)</term>
<term>Muscle, Skeletal (metabolism)</term>
<term>Muscle, Skeletal (pathology)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidative Stress (drug effects)</term>
<term>Oxidative Stress (genetics)</term>
<term>Protein Processing, Post-Translational (genetics)</term>
<term>Proteins (genetics)</term>
<term>Proteins (metabolism)</term>
<term>Proteomics (MeSH)</term>
<term>Sulfhydryl Compounds (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Complexe I de la chaîne respiratoire (génétique)</term>
<term>Complexe I de la chaîne respiratoire (métabolisme)</term>
<term>Contraction musculaire (effets des médicaments et des substances chimiques)</term>
<term>Contraction musculaire (génétique)</term>
<term>Fatigue musculaire (effets des médicaments et des substances chimiques)</term>
<term>Fatigue musculaire (génétique)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glycosylation (MeSH)</term>
<term>Maturation post-traductionnelle des protéines (génétique)</term>
<term>Muscles squelettiques (anatomopathologie)</term>
<term>Muscles squelettiques (effets des médicaments et des substances chimiques)</term>
<term>Muscles squelettiques (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peroxyde d'hydrogène (composition chimique)</term>
<term>Protéines (génétique)</term>
<term>Protéines (métabolisme)</term>
<term>Protéomique (MeSH)</term>
<term>Souris (MeSH)</term>
<term>Stress oxydatif (effets des médicaments et des substances chimiques)</term>
<term>Stress oxydatif (génétique)</term>
<term>Thiols (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Hydrogen Peroxide</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Electron Transport Complex I</term>
<term>Glutaredoxins</term>
<term>Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Electron Transport Complex I</term>
<term>Proteins</term>
<term>Sulfhydryl Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Muscles squelettiques</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Peroxyde d'hydrogène</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Muscle Contraction</term>
<term>Muscle Fatigue</term>
<term>Muscle, Skeletal</term>
<term>Oxidative Stress</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Contraction musculaire</term>
<term>Fatigue musculaire</term>
<term>Muscles squelettiques</term>
<term>Stress oxydatif</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Muscle Contraction</term>
<term>Muscle Fatigue</term>
<term>Oxidative Stress</term>
<term>Protein Processing, Post-Translational</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Complexe I de la chaîne respiratoire</term>
<term>Contraction musculaire</term>
<term>Fatigue musculaire</term>
<term>Glutarédoxines</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Protéines</term>
<term>Stress oxydatif</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Muscle, Skeletal</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexe I de la chaîne respiratoire</term>
<term>Muscles squelettiques</term>
<term>Protéines</term>
<term>Thiols</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Muscle, Skeletal</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Glycosylation</term>
<term>Mice</term>
<term>Oxidation-Reduction</term>
<term>Proteomics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Glycosylation</term>
<term>Oxydoréduction</term>
<term>Protéomique</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Protein S-glutathionylation is an important reversible post-translational modification implicated in redox signaling. Oxidative modifications to protein thiols can alter the activity of metabolic enzymes, transcription factors, kinases, phosphatases, and the function of contractile proteins. However, the extent to which muscle contraction induces oxidative modifications in redox sensitive thiols is not known. The purpose of this study was to determine the targets of S-glutathionylation redox signaling following fatiguing contractions. Anesthetized adult male CB6F1 (BALB/cBy × C57BL/6) mice were subjected to acute fatiguing contractions for 15 min using in vivo stimulations. The right (stimulated) and left (unstimulated) gastrocnemius muscleswere collected 60 min after the last stimulation and processed for redox proteomics assay of S-glutathionylation. Using selective reduction with a glutaredoxin enzyme cocktail and resin-assisted enrichment technique, we quantified the levels of site-specific protein S-glutathionylation at rest and following fatiguing contractions. Redox proteomics revealed over 2200 sites of S-glutathionylation modifications, of which 1290 were significantly increased after fatiguing contractions. Muscle contraction leads to the greatest increase in S-glutathionylation in the mitochondria (1.03%) and the smallest increase in the nucleus (0.47%). Regulatory cysteines were significantly S-glutathionylated on mitochondrial complex I and II, GAPDH, MDH1, ACO2, and mitochondrial complex V among others. Similarly, S-glutathionylation of RYR1, SERCA1, titin, and troponin I2 are known to regulate muscle contractility and were significantly S-glutathionylated after just 15 min of fatiguing contractions. The largest fold changes (> 1.6) in the S-glutathionylated proteome after fatigue occurred on signaling proteins such as 14-3-3 protein gamma and MAP2K4, as well as proteins like SERCA1, and NDUV2 of mitochondrial complex I, at previously unknown glutathionylation sites. These findings highlight the important role of redox control over muscle physiology, metabolism, and the exercise adaptive response. This study lays the groundwork for future investigation into the altered exercise adaptation associated with chronic conditions, such as sarcopenia.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29857311</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>10</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2213-2317</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>17</Volume>
<PubDate>
<Year>2018</Year>
<Month>07</Month>
</PubDate>
</JournalIssue>
<Title>Redox biology</Title>
<ISOAbbreviation>Redox Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Fatiguing contractions increase protein S-glutathionylation occupancy in mouse skeletal muscle.</ArticleTitle>
<Pagination>
<MedlinePgn>367-376</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S2213-2317(18)30355-0</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.redox.2018.05.011</ELocationID>
<Abstract>
<AbstractText>Protein S-glutathionylation is an important reversible post-translational modification implicated in redox signaling. Oxidative modifications to protein thiols can alter the activity of metabolic enzymes, transcription factors, kinases, phosphatases, and the function of contractile proteins. However, the extent to which muscle contraction induces oxidative modifications in redox sensitive thiols is not known. The purpose of this study was to determine the targets of S-glutathionylation redox signaling following fatiguing contractions. Anesthetized adult male CB6F1 (BALB/cBy × C57BL/6) mice were subjected to acute fatiguing contractions for 15 min using in vivo stimulations. The right (stimulated) and left (unstimulated) gastrocnemius muscleswere collected 60 min after the last stimulation and processed for redox proteomics assay of S-glutathionylation. Using selective reduction with a glutaredoxin enzyme cocktail and resin-assisted enrichment technique, we quantified the levels of site-specific protein S-glutathionylation at rest and following fatiguing contractions. Redox proteomics revealed over 2200 sites of S-glutathionylation modifications, of which 1290 were significantly increased after fatiguing contractions. Muscle contraction leads to the greatest increase in S-glutathionylation in the mitochondria (1.03%) and the smallest increase in the nucleus (0.47%). Regulatory cysteines were significantly S-glutathionylated on mitochondrial complex I and II, GAPDH, MDH1, ACO2, and mitochondrial complex V among others. Similarly, S-glutathionylation of RYR1, SERCA1, titin, and troponin I2 are known to regulate muscle contractility and were significantly S-glutathionylated after just 15 min of fatiguing contractions. The largest fold changes (> 1.6) in the S-glutathionylated proteome after fatigue occurred on signaling proteins such as 14-3-3 protein gamma and MAP2K4, as well as proteins like SERCA1, and NDUV2 of mitochondrial complex I, at previously unknown glutathionylation sites. These findings highlight the important role of redox control over muscle physiology, metabolism, and the exercise adaptive response. This study lays the groundwork for future investigation into the altered exercise adaptation associated with chronic conditions, such as sarcopenia.</AbstractText>
<CopyrightInformation>Copyright © 2018. Published by Elsevier B.V.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kramer</LastName>
<ForeName>Philip A</ForeName>
<Initials>PA</Initials>
<AffiliationInfo>
<Affiliation>Department of Radiology, University of Washington, Seattle, WA 98105, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Duan</LastName>
<ForeName>Jicheng</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gaffrey</LastName>
<ForeName>Matthew J</ForeName>
<Initials>MJ</Initials>
<AffiliationInfo>
<Affiliation>Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shukla</LastName>
<ForeName>Anil K</ForeName>
<Initials>AK</Initials>
<AffiliationInfo>
<Affiliation>Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Lu</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98105, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bammler</LastName>
<ForeName>Theo K</ForeName>
<Initials>TK</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98105, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Qian</LastName>
<ForeName>Wei-Jun</ForeName>
<Initials>WJ</Initials>
<AffiliationInfo>
<Affiliation>Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States. Electronic address: Weijun.qian@pnnl.gov.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Marcinek</LastName>
<ForeName>David J</ForeName>
<Initials>DJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Radiology, University of Washington, Seattle, WA 98105, United States. Electronic address: dmarc@uw.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P41 GM103493</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U54 HD083091</GrantID>
<Acronym>HD</Acronym>
<Agency>NICHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 AG000057</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 AG001751</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 ES007033</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 AG013280</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U24 DK112349</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>UC4 DK104167</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 DK017047</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>05</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Redox Biol</MedlineTA>
<NlmUniqueID>101605639</NlmUniqueID>
<ISSNLinking>2213-2317</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013438">Sulfhydryl Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 7.1.1.2</RegistryNumber>
<NameOfSubstance UI="D042967">Electron Transport Complex I</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042967" MajorTopicYN="N">Electron Transport Complex I</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006031" MajorTopicYN="N">Glycosylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009119" MajorTopicYN="N">Muscle Contraction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018763" MajorTopicYN="N">Muscle Fatigue</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018482" MajorTopicYN="N">Muscle, Skeletal</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="N">Protein Processing, Post-Translational</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040901" MajorTopicYN="N">Proteomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013438" MajorTopicYN="N">Sulfhydryl Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Muscle contraction</Keyword>
<Keyword MajorTopicYN="Y">Post-translational modification</Keyword>
<Keyword MajorTopicYN="Y">Redox signaling</Keyword>
<Keyword MajorTopicYN="Y">S-glutathionylation</Keyword>
<Keyword MajorTopicYN="Y">Skeletal muscle</Keyword>
<Keyword MajorTopicYN="Y">Thiol redox proteomics</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>04</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>05</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>05</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29857311</ArticleId>
<ArticleId IdType="pii">S2213-2317(18)30355-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.redox.2018.05.011</ArticleId>
<ArticleId IdType="pmc">PMC6007084</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>DNA Cell Biol. 1999 Jul;18(7):555-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10433554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 Sep 21;38(38):12408-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10493809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2000 May 1;347 Pt 3:821-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10769188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2002 Nov;34(11):1549-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12431453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2004 Apr 15;117(Pt 10):1875-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15090593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2004 Nov-Dec;3(6):1228-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15595732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):348-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15706083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jul 29;309(5735):771-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16051796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2005 Sep 13;44(36):11986-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16142896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2005 Dec 29;360(1464):2237-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16321793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>CMAJ. 2006 Mar 14;174(6):801-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16534088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2006 Apr;5(2):109-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16626390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 2006 Nov;127(11):830-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16996110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Dec 29;281(52):40354-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17071618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 May 15;46(19):5754-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17444656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kidney Int Suppl. 2007 Aug;(106):S3-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17653208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Nov 9;282(45):32640-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17848555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 2008 Jan;88(1):287-332</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18195089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2008 May 31;25(3):332-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18483468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2008 Sep;7(9):3789-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18707151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Nov;10(11):1941-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18774901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 2008 Dec;19(12):1875-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18789718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 2008 Oct;88(4):1243-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18923182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19033363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2009 Jan 1;417(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19061483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(1):44-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19131956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2009 Feb;34(2):85-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19135374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 May 26;106(21):8665-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19433800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 Nov;11(11):2685-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19558212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 Aug 19;4(8):e6673</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19690612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging (Albany NY). 2009 Sep 12;1(9):818-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20157569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2010 Sep 24;400(3):369-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20732303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Jul 1;15(1):135-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20812876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2010 Dec 17;404(5):902-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20950627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Mar 4;286(9):7601-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21196577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Mar 25;286(12):9905-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21257761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Signal Transduct. 2011;2011:792639</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21637379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Signal Transduct. 2012;2012:982794</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22175016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2012 Mar 15;590(6):1443-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22250211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2012 Apr;178(1):38-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22387132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pharm Sci. 2012 Aug 15;46(5):279-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22484331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Aging Res. 2012;2012:172492</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22778959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Feb 20;18(6):603-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23050834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cardiovasc Med. 2013 Jan;23(1):14-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23312134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2013 Apr 1;98(1):47-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23341578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2013 May;58:109-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23376233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Endocrinol Metab. 2013 Apr 15;304(8):E853-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23462817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Sep 10;19(8):804-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23682926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2013 Oct;12(5):763-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23692570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Sep 13;288(37):26497-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23861399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging (Albany NY). 2013 Aug;5(8):588-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23945201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Heart Assoc. 2013 Aug 20;2(4):e000184</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23963753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2013 Oct 17;14(10):20845-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24141185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2014 Feb;67:460-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24333276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2014 Jan;9(1):64-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24336471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2013 Dec 19;2:123-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24455476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Mar 13;156(6):1235-1246</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24630725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 May 23;289(21):14812-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24727547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Pharmacol. 2014 Jul 01;5:151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25024695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2014 Aug;42(4):965-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25109987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2014 Nov 7;13(11):5008-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25181601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Oct 31;5:5277</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25358478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2015 Mar;80:148-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25433365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Dev Biol. 2014 Nov 17;2:68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25453035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2015 Jul;84:227-245</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25843657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomolecules. 2015 Apr 10;5(2):356-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25866921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Toxicol. 2015 Aug;89(8):1209-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26047665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2015 Nov 25;6:347</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26635632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2016 Jan 26;10(1):524-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26700264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2016 Aug;8:1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26722838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2016 Aug;8:110-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26773874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Res. 2016 Nov;113(Pt A):116-124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27553984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2017 Mar 1;312(3):C314-C315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28148496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biosyst. 2017 May 2;13(5):816-829</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28357434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxidants (Basel). 2017 Aug 10;6(3):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28796154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Sep 7;170(6):1247-1257.e12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28844695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta Gen Subj. 2017 Dec;1861(12):3167-3177</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28935607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Jan 12;9(1):185</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29330363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Feb 23;271(8):4209-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8626764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Protein Chem. 1997 Jul;16(5):513-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9246637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Physiol. 1998 Sep;112(3):325-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9725892</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
<settlement>
<li>Seattle</li>
</settlement>
<orgName>
<li>Université de Washington</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Kramer, Philip A" sort="Kramer, Philip A" uniqKey="Kramer P" first="Philip A" last="Kramer">Philip A. Kramer</name>
</region>
<name sortKey="Bammler, Theo K" sort="Bammler, Theo K" uniqKey="Bammler T" first="Theo K" last="Bammler">Theo K. Bammler</name>
<name sortKey="Duan, Jicheng" sort="Duan, Jicheng" uniqKey="Duan J" first="Jicheng" last="Duan">Jicheng Duan</name>
<name sortKey="Gaffrey, Matthew J" sort="Gaffrey, Matthew J" uniqKey="Gaffrey M" first="Matthew J" last="Gaffrey">Matthew J. Gaffrey</name>
<name sortKey="Marcinek, David J" sort="Marcinek, David J" uniqKey="Marcinek D" first="David J" last="Marcinek">David J. Marcinek</name>
<name sortKey="Qian, Wei Jun" sort="Qian, Wei Jun" uniqKey="Qian W" first="Wei-Jun" last="Qian">Wei-Jun Qian</name>
<name sortKey="Shukla, Anil K" sort="Shukla, Anil K" uniqKey="Shukla A" first="Anil K" last="Shukla">Anil K. Shukla</name>
<name sortKey="Wang, Lu" sort="Wang, Lu" uniqKey="Wang L" first="Lu" last="Wang">Lu Wang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000265 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000265 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29857311
   |texte=   Fatiguing contractions increase protein S-glutathionylation occupancy in mouse skeletal muscle.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29857311" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020